async 函数
ES2017 标准引入了 async 函数,使得异步操作变得更加方便。
async 函数是什么?一句话,它就是 Generator 函数的语法糖。
前文有一个 Generator 函数,依次读取两个文件。
const fs = require('fs');
const readFile = function (fileName) { return new Promise(function (resolve, reject) { fs.readFile(fileName, function(error, data) { if (error) return reject(error); resolve(data); }); });};
const gen = function* () { const f1 = yield readFile('/etc/fstab'); const f2 = yield readFile('/etc/shells'); console.log(f1.toString()); console.log(f2.toString());};上面代码的函数gen可以写成async函数,就是下面这样。
const asyncReadFile = async function () { const f1 = await readFile('/etc/fstab'); const f2 = await readFile('/etc/shells'); console.log(f1.toString()); console.log(f2.toString());};一比较就会发现,async函数就是将 Generator 函数的星号(*)替换成async,将yield替换成await,仅此而已。
async函数对 Generator 函数的改进,体现在以下四点。
(1)内置执行器。
Generator 函数的执行必须靠执行器,所以才有了co模块,而async函数自带执行器。也就是说,async函数的执行,与普通函数一模一样,只要一行。
asyncReadFile();上面的代码调用了asyncReadFile函数,然后它就会自动执行,输出最后结果。这完全不像 Generator 函数,需要调用next方法,或者用co模块,才能真正执行,得到最后结果。
(2)更好的语义。
async和await,比起星号和yield,语义更清楚了。async表示函数里有异步操作,await表示紧跟在后面的表达式需要等待结果。
(3)更广的适用性。
co模块约定,yield命令后面只能是 Thunk 函数或 Promise 对象,而async函数的await命令后面,可以是 Promise 对象和原始类型的值(数值、字符串和布尔值,但这时会自动转成立即 resolved 的 Promise 对象)。
(4)返回值是 Promise。
async函数的返回值是 Promise 对象,这比 Generator 函数的返回值是 Iterator 对象方便多了。你可以用then方法指定下一步的操作。
进一步说,async函数完全可以看作多个异步操作,包装成的一个 Promise 对象,而await命令就是内部then命令的语法糖。
async函数返回一个 Promise 对象,可以使用then方法添加回调函数。当函数执行的时候,一旦遇到await就会先返回,等到异步操作完成,再接着执行函数体内后面的语句。
下面是一个例子。
async function getStockPriceByName(name) { const symbol = await getStockSymbol(name); const stockPrice = await getStockPrice(symbol); return stockPrice;}
getStockPriceByName('goog').then(function (result) { console.log(result);});上面代码是一个获取股票报价的函数,函数前面的async关键字,表明该函数内部有异步操作。调用该函数时,会立即返回一个Promise对象。
下面是另一个例子,指定多少毫秒后输出一个值。
function timeout(ms) { return new Promise((resolve) => { setTimeout(resolve, ms); });}
async function asyncPrint(value, ms) { await timeout(ms); console.log(value);}
asyncPrint('hello world', 50);上面代码指定 50 毫秒以后,输出hello world。
由于async函数返回的是 Promise 对象,可以作为await命令的参数。所以,上面的例子也可以写成下面的形式。
async function timeout(ms) { await new Promise((resolve) => { setTimeout(resolve, ms); });}
async function asyncPrint(value, ms) { await timeout(ms); console.log(value);}
asyncPrint('hello world', 50);async 函数有多种使用形式。
// 函数声明async function foo() {}
// 函数表达式const foo = async function () {};
// 对象的方法let obj = { async foo() {} };obj.foo().then(...)
// Class 的方法class Storage { constructor() { this.cachePromise = caches.open('avatars'); }
async getAvatar(name) { const cache = await this.cachePromise; return cache.match(`/avatars/${name}.jpg`); }}
const storage = new Storage();storage.getAvatar('jake').then(…);
// 箭头函数const foo = async () => {};async函数的语法规则总体上比较简单,难点是错误处理机制。
返回 Promise 对象
Section titled “返回 Promise 对象”async函数返回一个 Promise 对象。
async函数内部return语句返回的值,会成为then方法回调函数的参数。
async function f() { return 'hello world';}
f().then(v => console.log(v))// "hello world"上面代码中,函数f内部return命令返回的值,会被then方法回调函数接收到。
async函数内部抛出错误,会导致返回的 Promise 对象变为reject状态。抛出的错误对象会被catch方法回调函数接收到。
async function f() { throw new Error('出错了');}
f().then( v => console.log('resolve', v), e => console.log('reject', e))//reject Error: 出错了Promise 对象的状态变化
Section titled “Promise 对象的状态变化”async函数返回的 Promise 对象,必须等到内部所有await命令后面的 Promise 对象执行完,才会发生状态改变,除非遇到return语句或者抛出错误。也就是说,只有async函数内部的异步操作执行完,才会执行then方法指定的回调函数。
下面是一个例子。
async function getTitle(url) { let response = await fetch(url); let html = await response.text(); return html.match(/<title>([\s\S]+)<\/title>/i)[1];}getTitle('https://tc39.github.io/ecma262/').then(console.log)// "ECMAScript 2017 Language Specification"上面代码中,函数getTitle内部有三个操作:抓取网页、取出文本、匹配页面标题。只有这三个操作全部完成,才会执行then方法里面的console.log。
await 命令
Section titled “await 命令”正常情况下,await命令后面是一个 Promise 对象,返回该对象的结果。如果不是 Promise 对象,就直接返回对应的值。
async function f() { // 等同于 // return 123; return await 123;}
f().then(v => console.log(v))// 123上面代码中,await命令的参数是数值123,这时等同于return 123。
另一种情况是,await命令后面是一个thenable对象(即定义了then方法的对象),那么await会将其等同于 Promise 对象。
class Sleep { constructor(timeout) { this.timeout = timeout; } then(resolve, reject) { const startTime = Date.now(); setTimeout( () => resolve(Date.now() - startTime), this.timeout ); }}
(async () => { const sleepTime = await new Sleep(1000); console.log(sleepTime);})();// 1000上面代码中,await命令后面是一个Sleep对象的实例。这个实例不是 Promise 对象,但是因为定义了then方法,await会将其视为Promise处理。
这个例子还演示了如何实现休眠效果。JavaScript 一直没有休眠的语法,但是借助await命令就可以让程序停顿指定的时间。下面给出了一个简化的sleep实现。
function sleep(interval) { return new Promise(resolve => { setTimeout(resolve, interval); })}
// 用法async function one2FiveInAsync() { for(let i = 1; i <= 5; i++) { console.log(i); await sleep(1000); }}
one2FiveInAsync();await命令后面的 Promise 对象如果变为reject状态,则reject的参数会被catch方法的回调函数接收到。
async function f() { await Promise.reject('出错了');}
f().then(v => console.log(v)).catch(e => console.log(e))// 出错了注意,上面代码中,await语句前面没有return,但是reject方法的参数依然传入了catch方法的回调函数。这里如果在await前面加上return,效果是一样的。
任何一个await语句后面的 Promise 对象变为reject状态,那么整个async函数都会中断执行。
async function f() { await Promise.reject('出错了'); await Promise.resolve('hello world'); // 不会执行}上面代码中,第二个await语句是不会执行的,因为第一个await语句状态变成了reject。
有时,我们希望即使前一个异步操作失败,也不要中断后面的异步操作。这时可以将第一个await放在try...catch结构里面,这样不管这个异步操作是否成功,第二个await都会执行。
async function f() { try { await Promise.reject('出错了'); } catch(e) { } return await Promise.resolve('hello world');}
f().then(v => console.log(v))// hello world另一种方法是await后面的 Promise 对象再跟一个catch方法,处理前面可能出现的错误。
async function f() { await Promise.reject('出错了') .catch(e => console.log(e)); return await Promise.resolve('hello world');}
f().then(v => console.log(v))// 出错了// hello world如果await后面的异步操作出错,那么等同于async函数返回的 Promise 对象被reject。
async function f() { await new Promise(function (resolve, reject) { throw new Error('出错了'); });}
f().then(v => console.log(v)).catch(e => console.log(e))// Error:出错了上面代码中,async函数f执行后,await后面的 Promise 对象会抛出一个错误对象,导致catch方法的回调函数被调用,它的参数就是抛出的错误对象。具体的执行机制,可以参考后文的“async 函数的实现原理”。
防止出错的方法,也是将其放在try...catch代码块之中。
async function f() { try { await new Promise(function (resolve, reject) { throw new Error('出错了'); }); } catch(e) { } return await('hello world');}如果有多个await命令,可以统一放在try...catch结构中。
async function main() { try { const val1 = await firstStep(); const val2 = await secondStep(val1); const val3 = await thirdStep(val1, val2);
console.log('Final: ', val3); } catch (err) { console.error(err); }}下面的例子使用try...catch结构,实现多次重复尝试。
const superagent = require('superagent');const NUM_RETRIES = 3;
async function test() { let i; for (i = 0; i < NUM_RETRIES; ++i) { try { await superagent.get('http://google.com/this-throws-an-error'); break; } catch(err) {} } console.log(i); // 3}
test();上面代码中,如果await操作成功,就会使用break语句退出循环;如果失败,会被catch语句捕捉,然后进入下一轮循环。
第一点,前面已经说过,await命令后面的Promise对象,运行结果可能是rejected,所以最好把await命令放在try...catch代码块中。
async function myFunction() { try { await somethingThatReturnsAPromise(); } catch (err) { console.log(err); }}
// 另一种写法
async function myFunction() { await somethingThatReturnsAPromise() .catch(function (err) { console.log(err); });}第二点,多个await命令后面的异步操作,如果不存在继发关系,最好让它们同时触发。
let foo = await getFoo();let bar = await getBar();上面代码中,getFoo和getBar是两个独立的异步操作(即互不依赖),被写成继发关系。这样比较耗时,因为只有getFoo完成以后,才会执行getBar,完全可以让它们同时触发。
// 写法一let [foo, bar] = await Promise.all([getFoo(), getBar()]);
// 写法二let fooPromise = getFoo();let barPromise = getBar();let foo = await fooPromise;let bar = await barPromise;上面两种写法,getFoo和getBar都是同时触发,这样就会缩短程序的执行时间。
第三点,await命令只能用在async函数之中,如果用在普通函数,就会报错。
async function dbFuc(db) { let docs = [{}, {}, {}];
// 报错 docs.forEach(function (doc) { await db.post(doc); });}上面代码会报错,因为await用在普通函数之中了。但是,如果将forEach方法的参数改成async函数,也有问题。
function dbFuc(db) { //这里不需要 async let docs = [{}, {}, {}];
// 可能得到错误结果 docs.forEach(async function (doc) { await db.post(doc); });}上面代码可能不会正常工作,原因是这时三个db.post()操作将是并发执行,也就是同时执行,而不是继发执行。正确的写法是采用for循环。
async function dbFuc(db) { let docs = [{}, {}, {}];
for (let doc of docs) { await db.post(doc); }}另一种方法是使用数组的reduce()方法。
async function dbFuc(db) { let docs = [{}, {}, {}];
await docs.reduce(async (_, doc) => { await _; await db.post(doc); }, undefined);}上面例子中,reduce()方法的第一个参数是async函数,导致该函数的第一个参数是前一步操作返回的 Promise 对象,所以必须使用await等待它操作结束。另外,reduce()方法返回的是docs数组最后一个成员的async函数的执行结果,也是一个 Promise 对象,导致在它前面也必须加上await。
上面的reduce()的参数函数里面没有return语句,原因是这个函数的主要目的是db.post()操作,不是返回值。而且async函数不管有没有return语句,总是返回一个 Promise 对象,所以这里的return是不必要的。
如果确实希望多个请求并发执行,可以使用Promise.all方法。当三个请求都会resolved时,下面两种写法效果相同。
async function dbFuc(db) { let docs = [{}, {}, {}]; let promises = docs.map((doc) => db.post(doc));
let results = await Promise.all(promises); console.log(results);}
// 或者使用下面的写法
async function dbFuc(db) { let docs = [{}, {}, {}]; let promises = docs.map((doc) => db.post(doc));
let results = []; for (let promise of promises) { results.push(await promise); } console.log(results);}第四点,async 函数可以保留运行堆栈。
const a = () => { b().then(() => c());};上面代码中,函数a内部运行了一个异步任务b()。当b()运行的时候,函数a()不会中断,而是继续执行。等到b()运行结束,可能a()早就运行结束了,b()所在的上下文环境已经消失了。如果b()或c()报错,错误堆栈将不包括a()。
现在将这个例子改成async函数。
const a = async () => { await b(); c();};上面代码中,b()运行的时候,a()是暂停执行,上下文环境都保存着。一旦b()或c()报错,错误堆栈将包括a()。
async 函数的实现原理
Section titled “async 函数的实现原理”async 函数的实现原理,就是将 Generator 函数和自动执行器,包装在一个函数里。
async function fn(args) { // ...}
// 等同于
function fn(args) { return spawn(function* () { // ... });}所有的async函数都可以写成上面的第二种形式,其中的spawn函数就是自动执行器。
下面给出spawn函数的实现,基本就是前文自动执行器的翻版。
function spawn(genF) { return new Promise(function(resolve, reject) { const gen = genF(); function step(nextF) { let next; try { next = nextF(); } catch(e) { return reject(e); } if(next.done) { return resolve(next.value); } Promise.resolve(next.value).then(function(v) { step(function() { return gen.next(v); }); }, function(e) { step(function() { return gen.throw(e); }); }); } step(function() { return gen.next(undefined); }); });}与其他异步处理方法的比较
Section titled “与其他异步处理方法的比较”我们通过一个例子,来看 async 函数与 Promise、Generator 函数的比较。
假定某个 DOM 元素上面,部署了一系列的动画,前一个动画结束,才能开始后一个。如果当中有一个动画出错,就不再往下执行,返回上一个成功执行的动画的返回值。
首先是 Promise 的写法。
function chainAnimationsPromise(elem, animations) {
// 变量ret用来保存上一个动画的返回值 let ret = null;
// 新建一个空的Promise let p = Promise.resolve();
// 使用then方法,添加所有动画 for(let anim of animations) { p = p.then(function(val) { ret = val; return anim(elem); }); }
// 返回一个部署了错误捕捉机制的Promise return p.catch(function(e) { /* 忽略错误,继续执行 */ }).then(function() { return ret; });
}虽然 Promise 的写法比回调函数的写法大大改进,但是一眼看上去,代码完全都是 Promise 的 API(then、catch等等),操作本身的语义反而不容易看出来。
接着是 Generator 函数的写法。
function chainAnimationsGenerator(elem, animations) {
return spawn(function*() { let ret = null; try { for(let anim of animations) { ret = yield anim(elem); } } catch(e) { /* 忽略错误,继续执行 */ } return ret; });
}上面代码使用 Generator 函数遍历了每个动画,语义比 Promise 写法更清晰,用户定义的操作全部都出现在spawn函数的内部。这个写法的问题在于,必须有一个任务运行器,自动执行 Generator 函数,上面代码的spawn函数就是自动执行器,它返回一个 Promise 对象,而且必须保证yield语句后面的表达式,必须返回一个 Promise。
最后是 async 函数的写法。
async function chainAnimationsAsync(elem, animations) { let ret = null; try { for(let anim of animations) { ret = await anim(elem); } } catch(e) { /* 忽略错误,继续执行 */ } return ret;}可以看到 Async 函数的实现最简洁,最符合语义,几乎没有语义不相关的代码。它将 Generator 写法中的自动执行器,改在语言层面提供,不暴露给用户,因此代码量最少。如果使用 Generator 写法,自动执行器需要用户自己提供。
实例:按顺序完成异步操作
Section titled “实例:按顺序完成异步操作”实际开发中,经常遇到一组异步操作,需要按照顺序完成。比如,依次远程读取一组 URL,然后按照读取的顺序输出结果。
Promise 的写法如下。
function logInOrder(urls) { // 远程读取所有URL const textPromises = urls.map(url => { return fetch(url).then(response => response.text()); });
// 按次序输出 textPromises.reduce((chain, textPromise) => { return chain.then(() => textPromise) .then(text => console.log(text)); }, Promise.resolve());}上面代码使用fetch方法,同时远程读取一组 URL。每个fetch操作都返回一个 Promise 对象,放入textPromises数组。然后,reduce方法依次处理每个 Promise 对象,然后使用then,将所有 Promise 对象连起来,因此就可以依次输出结果。
这种写法不太直观,可读性比较差。下面是 async 函数实现。
async function logInOrder(urls) { for (const url of urls) { const response = await fetch(url); console.log(await response.text()); }}上面代码确实大大简化,问题是所有远程操作都是继发。只有前一个 URL 返回结果,才会去读取下一个 URL,这样做效率很差,非常浪费时间。我们需要的是并发发出远程请求。
async function logInOrder(urls) { // 并发读取远程URL const textPromises = urls.map(async url => { const response = await fetch(url); return response.text(); });
// 按次序输出 for (const textPromise of textPromises) { console.log(await textPromise); }}上面代码中,虽然map方法的参数是async函数,但它是并发执行的,因为只有async函数内部是继发执行,外部不受影响。后面的for..of循环内部使用了await,因此实现了按顺序输出。
顶层 await
Section titled “顶层 await”早期的语法规定是,await命令只能出现在 async 函数内部,否则都会报错。
// 报错const data = await fetch('https://api.example.com');上面代码中,await命令独立使用,没有放在 async 函数里面,就会报错。
从 ES2022 开始,允许在模块的顶层独立使用await命令,使得上面那行代码不会报错了。它的主要目的是使用await解决模块异步加载的问题。
let output;async function main() { const dynamic = await import(someMission); const data = await fetch(url); output = someProcess(dynamic.default, data);}main();export { output };上面代码中,模块awaiting.js的输出值output,取决于异步操作。我们把异步操作包装在一个 async 函数里面,然后调用这个函数,只有等里面的异步操作都执行,变量output才会有值,否则就返回undefined。
下面是加载这个模块的写法。
import { output } from "./awaiting.js";
function outputPlusValue(value) { return output + value }
console.log(outputPlusValue(100));setTimeout(() => console.log(outputPlusValue(100)), 1000);上面代码中,outputPlusValue()的执行结果,完全取决于执行的时间。如果awaiting.js里面的异步操作没执行完,加载进来的output的值就是undefined。
目前的解决方法,就是让原始模块输出一个 Promise 对象,从这个 Promise 对象判断异步操作有没有结束。
let output;export default (async function main() { const dynamic = await import(someMission); const data = await fetch(url); output = someProcess(dynamic.default, data);})();export { output };上面代码中,awaiting.js除了输出output,还默认输出一个 Promise 对象(async 函数立即执行后,返回一个 Promise 对象),从这个对象判断异步操作是否结束。
下面是加载这个模块的新的写法。
import promise, { output } from "./awaiting.js";
function outputPlusValue(value) { return output + value }
promise.then(() => { console.log(outputPlusValue(100)); setTimeout(() => console.log(outputPlusValue(100)), 1000);});上面代码中,将awaiting.js对象的输出,放在promise.then()里面,这样就能保证异步操作完成以后,才去读取output。
这种写法比较麻烦,等于要求模块的使用者遵守一个额外的使用协议,按照特殊的方法使用这个模块。一旦你忘了要用 Promise 加载,只使用正常的加载方法,依赖这个模块的代码就可能出错。而且,如果上面的usage.js又有对外的输出,等于这个依赖链的所有模块都要使用 Promise 加载。
顶层的await命令,就是为了解决这个问题。它保证只有异步操作完成,模块才会输出值。
const dynamic = import(someMission);const data = fetch(url);export const output = someProcess((await dynamic).default, await data);上面代码中,两个异步操作在输出的时候,都加上了await命令。只有等到异步操作完成,这个模块才会输出值。
加载这个模块的写法如下。
import { output } from "./awaiting.js";function outputPlusValue(value) { return output + value }
console.log(outputPlusValue(100));setTimeout(() => console.log(outputPlusValue(100)), 1000);上面代码的写法,与普通的模块加载完全一样。也就是说,模块的使用者完全不用关心,依赖模块的内部有没有异步操作,正常加载即可。
这时,模块的加载会等待依赖模块(上例是awaiting.js)的异步操作完成,才执行后面的代码,有点像暂停在那里。所以,它总是会得到正确的output,不会因为加载时机的不同,而得到不一样的值。
注意,顶层await只能用在 ES6 模块,不能用在 CommonJS 模块。这是因为 CommonJS 模块的require()是同步加载,如果有顶层await,就没法处理加载了。
下面是顶层await的一些使用场景。
// import() 方法加载const strings = await import(`/i18n/${navigator.language}`);
// 数据库操作const connection = await dbConnector();
// 依赖回滚let jQuery;try { jQuery = await import('https://cdn-a.com/jQuery');} catch { jQuery = await import('https://cdn-b.com/jQuery');}注意,如果加载多个包含顶层await命令的模块,加载命令是同步执行的。
console.log("X1");await new Promise(r => setTimeout(r, 1000));console.log("X2");
// y.jsconsole.log("Y");
// z.jsimport "./x.js";import "./y.js";console.log("Z");上面代码有三个模块,最后的z.js加载x.js和y.js,打印结果是X1、Y、X2、Z。这说明,z.js并没有等待x.js加载完成,再去加载y.js。
顶层的await命令有点像,交出代码的执行权给其他的模块加载,等异步操作完成后,再拿回执行权,继续向下执行。